

ChE-304 Problem Set 1

Week 1

Problem 1

Every few months a new “miracle technology” appears.

Serious company: investments from BP, Google Ventures, Conoco Phillips...

Claims to produce hydrocarbons and biocarbon.

Impressive number: **3000-4000 gallons/acre gasoline**

Should you invest?

This was a real question that William Banholzer got when he was CEO of Dow Chemical.

Hint: Let's use the first law to calculate the absolute minimum amount of biomass that would require and see if it is a realistic amount to expect from one acre...

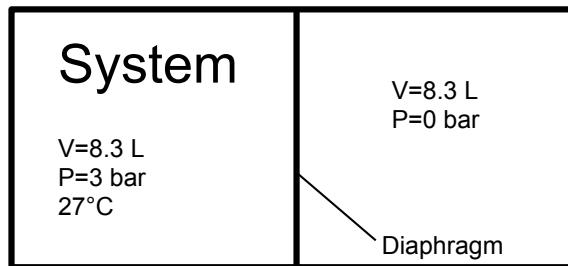
COOL PLANET BIOFUELS

Release Summary

COOL PLANET BIOFUELS Achieves 6,000 gallons per acre biomass to gasoline conversion in pilot testing.

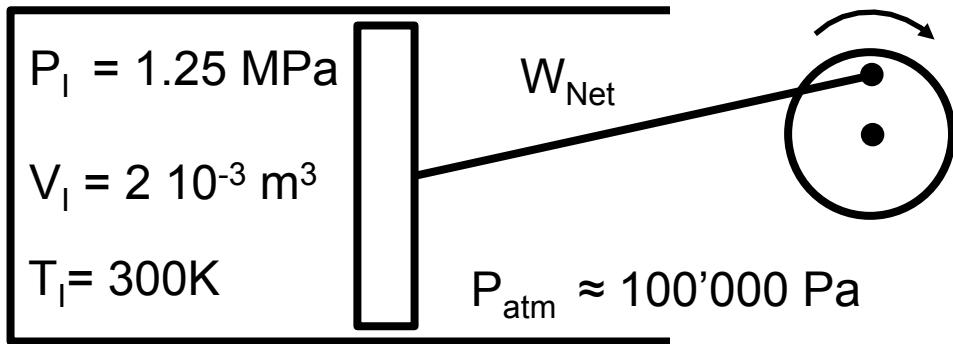
Release Versions

English EIN: Enhanced Online News


Contacts

Max Cheary, VP Business Development
408-261-0000
mcheary@coolplanetbiofuels.com

Problem 2


Assume we have a perfectly isolated system with 1 mole of an ideal gas at a pressure $P = 3$ bar in a 16.6 L chamber that is isolated by a diaphragm from another 16.6 L chamber that has been evacuated. What is the change in entropy?

Surroundings

Problem 3

In order to properly understand PV work, let's calculate the work done in a single reversible expansion stroke of a piston. In this case, the gas is air and it is assumed that it acts ideally. The expansion occurs until the gas inside the cylinder is at atmospheric pressure. You can assume that the piston and cylinder are perfectly isolating.

Recall that for an ideal gas where c_p and c_v are constant

$$P_1 V_1^k = P_2 V_2^k \text{ or } PV^k = \text{constant with } k = c_p/c_v \approx 1.4 \text{ for air}$$

Calculate W_{Net} , as well as T_{final} and V_{final} of the gas.